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1. 

The dynamics of one-degree-of-freedom linear oscillators contacting rigid or elastic stops
has been a subject of considerable interest due to its application in many branches of
engineering [1–3]. A few references are included here for brevity, as many more can be
found in the papers referred to here. This system can exhibit simple as well as complex
periodic and chaotic motions. In most of the previous investigations, the basic system was
modelled as a linear oscillator. Here, the effect of non-linearity on dynamic characteristics
of a viscously damped Duffing oscillator with hardening or softening spring contacting
rigid snubbers under external sinusoidal force is studied using a central difference method
[1, 2]. An extremely small time step was used to reduce accumulation of errors due to the
repeated nature of impacts [4, 5]. The effect of non-linearity on periodic one impact/n cycles
motions was studied in detail. Results indicate that typical non-linear behaviour with a
jump phenomenon present in the impactless case also occurs in this case. The displacement
amplitude at resonant peaks reduces with increase in the hardening non-linearity.
However, the frequency ranges of one impact/n cycles motions expand significantly with
increase of the hardening non-linearity. The opposite behaviour was observed in case of
a softening spring. The effects of system parameters and external excitation on periodic
motions, velocities after impacts, and the average number of impacts were also
investigated.

2. 

A damped Duffing oscillator excited by a sinusoidal force F sin Vt was considered. It
consists of a linear and cubic non-linear spring with stiffness coefficients K1 and K2

respectively, a viscous dashpot with damping constant C and mass M. Rigid stops were
located at distances d1 and d2 on the right and left respectively. The collisions between the
oscillator and stops were considered instantaneous and represented by the coefficient of
restitution e. The differential equation of motion of M between impacts is

Mẍ+Cẋ+K1x+K2x3 =F sin Vt, (1)

where x is the absolute displacement of M and the dot represents differentiation with
respect to time t. An exact closed form solution of displacement between impacts is not
available; hence a numerical approach based on the central difference method was used.
The displacement xi+1 at time ti+1 can be calculated using the previous displacements xi

and xi−1 at times ti and ti−1 respectively, as [6]

xi+1 = [{2M/Dt)2 −K1}xi + {C/(2Dt)−M/(Dt)2}xi−1

−K2x3
i +F sin Vti ]/{M/(Dt)2 +C/(2Dt)}]., (2)
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where Dt is the time step. The x−1 required to start the simulation with assumed initial
displacement x0 and velocity ẋ0 at t=0 is given as x−1 = x0 − ẋ0Dt+(Dt)2x0)/2 and
ẍ0 = (−Cx0 −K1x0 −K2x3

0)/M. The unknown times of collisions on stop 1 or 2 were
obtained by iteratively solving (xi+1 + d2)Q 10−12 for x(t)Q 0 and (xi+1 − d1)Q 10−12 for
x(t)q 0. An efficient approach based on combining overshoot, bisection and constant time
step was used. The velocities just before and after were obtained as ẋ− =(xi+1−xi )/
(ti+1 − ti ) and ẋ+ =−eẋ− respectively. The xi+1 and ẋ+ were used as the new initial
conditions for the next computation cycle. A computer program based on the above
equations and additional equations valid for joint motions was developed and an extremely
small Dt=(V/2p)/20 000 was used. All computations were performed using double
precision arithmetic on a DEC-station 2100 digital computer.

3.   

The results of an impact oscillator with linear spring (K2 =0) were compared with
previous theoretical results and they agree at least upto five decimal places. As an example,
a case with M=K1 =F=1·0, C=K2 =0·0, e=0·8, d1 =0 and V=6 was considered,
and the system exhibits stable periodic one-impact/three-cycles motion [3]. The numerical
values of the non-dimensional parameter MVẋ+/F obtained using 50, 500 and 20 000 steps
per cycle were 8·375134, 8·230265 and 8·228571, respectively, and the agreement with the
corresponding theoretical value of 8·228571 [3] is obviously best for the smallest time step.
This and other results clearly indicated that an extremely small step produced the most
reliable results at the cost of computation time. Accurate results are required for
calculating the Feigenbaum number and the frequency at which chaos starts. Results of
a Duffing oscillator contacting a single stop are presented first.

The effects of the non-linearity parameter K2 on the non-dimensional displacement,
xmax/A, the velocity immediately after impact, ẋia /AV and the time durations between
impacts, (ti+1 − ti )V/2p, are presented in Figure 1. The xmax and A are the maximum
displacements of the Duffing oscillator with impacts and that of a simple linear oscillator
without impacts, respectively. A comparison of Figure 1(e) with Figure 1(b) indicates that
pattern of periodic and aperiodic motions occurring for a hardening Duffing oscillator
(K2 =1) looks similar to that for the impact oscillator (K2 =0). The basic pattern in the
direction of increasing frequency is multi-impact/cycle, two unequispaced impacts/cycle,
one equispaced impact/cycle, period doubling motions and chaotic motion. A similar
pattern repeats as frequency increases, however the period increases from one to two to
three cycles. However, as K2 increases the whole pattern moves towards the direction of
the higher frequency. The widely studied periodic one equispaced impact per n cycles
motion corresponds to the horizontal lines at (ti+1 − ti )V/2p=1, 2, etc., as seen in the
second row of Figure 1. It is important to note that the frequency range of this widely
studied motion increases with increase in K2. As an example, the frequency ranges of the
(1, 1) motions for K2 =0, 1, 10 and 100 are (1·4−2·6=1·2), (1·6−3·0=1·4),
(2·3−4·2=1·9) and (3·6−6·2=2·6) respectively. The xmax/A peaks within the frequency
range of one equispaced impact per n cycles motion and the peak moves right with increase
in K2. As an example, for n=1, the peak for K2 =0 occurs at V=2 and increases to
V=2·9, 4·3 and 6·3 for K2 =1, 10 and 100, respectively. Additionally, the response curve
is symmetric about the peak for K2 =0 and is asymmetric for K2 q 0, and this behaviour
is similar to the response of a hardening system with a jump. xmax/Aq 1 for most of the
frequency range, and this indicates that due to impacts and non-linear stiffness the
maximum displacement is larger than that of a linear impactless system and may reach
a high value. The variation of ẋia /AV with V is shown in column 3 of Figure 1 and looks
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Figure 1. The effect of K2 on Xmax/A, X� ia /AV and V(ti+1 − ti )/(2p) of a Duffing oscillator contacting a single
stop at zero gap. M=K1 =F=1·0, C=0·0, e=0·8 and d1 =0·0. (a–c) K2 =0; (d–f) K2 =1; (g–i) K2 =10; (j–l)
K2 =100.

similar to that of xmax/A. However, the maximum values are smaller, and are less than 10
with peaks of nearly indentical heights.

The behaviour of a stiff system at K2 =100 in the higher excitation frequency of V up
to 35 is shown in Figure 2, which indicates that, for all practical purposes, the high
frequency response above V=15 is aperiodic. xmax/A reached a maximum of 160; however,
ẋia /AV was generally below 5. In Figure 2(c) it is indicated that (ti+1 − ti )V/2p has two
bands, one at low values and the other at high values, and this second band expands with
frequency. This band is within two lines joining points (35, 16) and (35, 12) to the origin.
The variation of the average time between impacts, shown in Figure 2(d), indicates that
it increases with V in a linear fashion, and values are clustered around a line joining a point
(35, 14) to the origin.

The effect of damping on response was also investigated and it indicated the expected
behaviour, where large peaks in xmax /A seen in Figure 1 for j=0·0 were significantly
reduced for jq 0·0 [1, 2]. The damping affects the response for small values of K2, while
the response for the same damping at a large K2 =100 is less, because in this case stiffness
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Figure 2. The effect of large K2 on Xmax/A, X� ia /AV, V(ti+1 − ti)/(2p) and V(ti+1 − ti )ave/(2p) in the high
frequency range. The other parameters are the same as in Figure 1.

is predominant. Thus, the effect of damping is more of a quantitative nature. The effects
of changing K2 and F according to K2F2 = constant and for zero gap indicate that the
behaviour was nearly identical when presented using the non-dimensional parameters used
above. Additionally, it was observed that the response when the gap was zero was not very
sensitive to an increase in force, as an increasing force form 1 to 10 to 100 produced results
identical to those shown in Figure 1(a). Additionally, the effect of a weakly softening spring
(K2 =−0·1) indicated that the response looked similar to that shown in Figure 1(a) when
the same parameters were used. However, the frequency ranges of (1, n) motions move
towards the left, curves bend towards the left and a jump also occurs on the left side. The
results of an oscillator contacting two stops located with identical small gaps, d1 = d2 and
1�d1/A, indicated that results for K2 =0 and 1 do not differ significantly and look similar
to each other, and this suggests that the effect of non-linearity K2 on the response in this
case is not significant, because the K2x3 term remains small. Hence, the results for K2 =0
can be helpful in assessing the behaviour for non-zero K2 when gaps are small compared
to A.

4. 

The behaviour of a Duffing oscillator excited by a sinusoidal force contacting a stop
located on one or both sides was investigated. The results were obtained using a central
difference method with a very small time step. The dynamic responses of a Duffing
oscillator and a linear oscillator contacting a single stop can differ significantly. The
frequency ranges of (1, n) motions significantly expand and move towards the direction
of increasing frequency for the hardening spring, and the reverse behaviour is found for
the softening spring.
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